Cost-exergy optimisation of linear Fresnel reflectors

نویسندگان

  • J. D. Nixon
  • P. A. Davies
چکیده

This paper presents a new method for the optimisation of the mirror element spacing arrangement and operating temperature of linear Fresnel reflectors (LFR). The specific objective is to maximise available power output (i.e. exergy) and operational hours whilst minimising cost. The method is described in detail and compared to an existing design method prominent in the literature. Results are given in terms of the exergy per total mirror area (W/m 2 ) and cost per exergy (US $/W). The new method is applied principally to the optimisation of an LFR in Gujarat, India, for which cost data have been gathered. It is recommended to use a spacing arrangement such that the onset of shadowing among mirror elements occurs at a transversal angle of 45°. This results in a cost per exergy of 2.3 $/W. Compared to the existing design approach, the exergy averaged over the year is increased by 9% to 50 W/m 2 and an additional 122 hours of operation per year are predicted. The ideal operating temperature at the surface of the absorber tubes is found to be 300°C. It is concluded that the new method is an improvement over existing techniques and a significant tool for any future design work on LFR systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoeconomic Evaluation of Integrated Solar Combined Cycle Systems (ISCCS)

Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditions, using post-combustion during the hours of no solar resource. A thermoeconomic study of the o...

متن کامل

اثر آینۀ ثانویه بر مقدار و توزیع شار ورودی لولۀ جاذب در متمرکزکننده‌های فرنل

Flat reflectors which have lower price compared with parabolic ones are used in Fresnel concentrator. Each Fresnel collector is comprised of a few flat reflectors which are placed parallel to each other near the ground. If effective width of flat reflectors is more than absorber tube diameter, reflected rays will be partly lost, hence low optical efficiency. By installing a secondary reflector ...

متن کامل

مطالعه و بهینه‌سازی اگزرژی یک کلکتور خورشیدی حرارتی تخت مجهز شده به بازتابنده‌ها و عدسی‌ها در یک مدار بسته با استفاده از نتایج آزمایش‌ها‌

In this study, exergy analysis of a flat plat solar collector in a closed circuit has been performed using existing experimental data and the effects of utilization of the collector with upper, lower and side reflectors alone and together with lenses on exergy efficiency have been considered. Then, based on a mathematical model, optimization analysis has been performed. Unlike the past studies,...

متن کامل

Exergoeconomic Evaluation of LNG and NGL Co-production Process Based on the MFC Refrigeration Systems

In this paper, exergy and exergoeconomic analysis is performed on the recently proposed process forthe coproduction of liquefied natural gas (LNG) and natural gas liquids (NGL) based on the mixedfluid cascade (MFC) refrigeration systems, as one of the most important and popular natural gasliquefaction processes. To carry out this analysis, at first, the proposed process is sim...

متن کامل

A Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System

This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016